
Asynchronous Pipeline for Processing Huge Corpora on
Medium to Low Resource Infrastructures

Pedro Javier Ortiz Suárez¹,², Benoît Sagot¹, Laurent Romary¹
July 21, 2019

¹Inria, Paris, France
²Sorbonne Université, Paris, France

Table of contents

1. Introduction

2. Common Crawl

3. fastText Pipeline

4. Asynchronous pipeline

5. Benchmarks

6. OSCAR

1

Introduction

Transfer Learning in NLP

Transfer Learning models for Natural Language Processing (NLP) have
consistently and repeatedly improved the state-of-the-art in a wide
variety of NLP tasks. There are to types of Transfer Learning models:

Non contextualised:
• word2vec [9],
• GloVe [11],
• fastText [8].

Contextualised:
• ELMo [12],
• GPT-1 [13],
• GPT-2 [14],
• BERT [4],
• XLNet [15].

2

Corpus size

Even though these models have clear advantages, their main
drawback is the amount of data that is needed to train them in order
to obtain a functional and efficient model:

English models:

• word2vec: one billion word dataset (news articles) [9].
• fastText: Common Crawl [8].
• ELMo: 5.5 billion token dataset (crawled news + Wikipedia) [12].
• BERT: 3.3 billion word corpus (Wikipedia + BooksCorpus [16]) [4].
• GPT-2: 40GB corpus (scraping outbound links from Reddit) [14].
• XLNet: BookCorpus, Wikipedia, Giga5 [10], ClueWeb 2012-B [3]
and Common Crawl.

3

Corpus and model availability

In comparison the availability of models in languages other than
English has been rather limited.

Multilingual models:

• word2vec/fastText: plain text from Wikipedia [1, 2].
• fastText: Common Crawl (157 different languages) [5].

Moreover, even some of the bigger English corpora mentioned above
are not made available by the authors due to copyright issues or to
the infrastructure costs attached to maintaining and distributing
such big corpora.

4

Common Crawl

Common Crawl

Common Crawl is a non-profit foundation which produces and
maintains an open repository of web crawled data that is both
accessible and analysable.

Common Crawl’s complete web archive consists of petabytes of data
collected over 8 years of web crawling. The repository comprises:

• WARC files: raw web page HTML data,
• WAT files: metdata extracts,
• WET files: plain text extracts.

The organisation’s crawlers respects both nofollow and
robots.txt policies.

5

Common Crawl Snapshots

To address the problems of getting large corpora for multiple
languages we chose to work with one of the monthly snapshots of
Common Crawl.

Each snapshot is in itself a massive multilingual corpus (about 20TB
of plain text), where every single file contains data coming from
multiple web pages written in a large variety of languages and
covering all possible types of topics.

In order to effectively use this corpus for the mentioned Natural
Language Processing and Machine Learning applications, one has
first to extract, filter, clean and classify the data in the snapshot by
language.

6

fastText Pipeline

fastText Pipeline

The fastText authors have already proposed a pipeline to filter,
clean and classify Common Crawl [5].

Their solution, consisting of a series of BASH scripts:

• Is a synchronous blocking pipeline,
• Works well on infrastructures having high I/O speeds,
• But downscales poorly to medium-low resource infrastructures
using electromechanical mediums.

Even though they open source their pipeline under an MIT-license,
they do not distribute their cleaned version of Common Crawl

7

fastText Pipeline

The fasttext pipeline consists of two stages:

1. Their pipeline first launches multiple process, preferably as
many as available cores. Each process:
1.1 Downloads one Common Crawl WET file.
1.2 Decompresses The WET.
1.3 Launches an instance of the fastText linear classifier [6, 7].
1.4 The classifier generates a language tag for each line in the WET file.
1.5 The tags are used to append each line (longer that 100 bytes) to its

corresponding language file.
2. When all the WET files are classified, again a number of
processes are launched, each process:
2.1 Reads a language file and filters for invalid UTF-8 characters.
2.2 Reads the filtered file and performs deduplication.

8

fastText Pipeline

Common
Crawl

Compressed
Files

WET
Files

Language Tags
Files Classified
by Language

 fastText

...

 fastText

 fastText ...

...

...
fastText

...

Filtered Files

...

9

fastText Pipeline

Common
Crawl

Compressed
Files

WET
Files

Language Tags
Files Classified
by Language

 fastText

...

 fastText

 fastText ...

...

...
fastText

...

Filtered Files

...

9

fastText Pipeline

Common
Crawl

Compressed
Files

WET
Files

Language Tags
Files Classified
by Language

 fastText

...

 fastText

 fastText ...

...

...
fastText

...

Filtered Files

...

9

fastText Pipeline

Common
Crawl

Compressed
Files

WET
Files

Language Tags
Files Classified
by Language

 fastText

...

 fastText

 fastText

...

...

...
fastText

...

Filtered Files

...

9

fastText Pipeline

Common
Crawl

Compressed
Files

WET
Files

Language Tags
Files Classified
by Language

 fastText

...

 fastText

 fastText ...

...

...
fastText

...

Filtered Files

...

9

fastText Pipeline

Common
Crawl

Compressed
Files

WET
Files

Language Tags
Files Classified
by Language

 fastText

...

 fastText

 fastText ...

...

...
fastText

...

Filtered Files

...

9

fastText Pipeline

Common
Crawl

Compressed
Files

WET
Files

Language Tags
Files Classified
by Language

 fastText

...

 fastText

 fastText ...

...

...
fastText

...

Filtered Files

...

9

fastText Pipeline

Common
Crawl

Compressed
Files

WET
Files

Language Tags
Files Classified
by Language

 fastText

...

 fastText

 fastText ...

...

...
fastText

...

Filtered Files

...

9

Asynchronous pipeline

goclassy

We propose a new pipeline derived from the fastText one which we
call goclassy, we reuse the fastText linear classifier and the
pre-trained fastText model for language recognition[5]. In our
pipeline

• We launch a worker for each operation instead of clustering
multiple operations into a single process.

• We implement goclassy using the Go programming language and
let the Go runtime handle the scheduling.

• We introduced buffers in all our I/O operations to reduce I/O
blocking.

• We do the filtering (of lines shorter than 100 UTF-8 characters)
and cleaning processes at line level before feeding each line to
the classifier.

• After all WET files are processed, we then use runiq for
deduplication and pigz for compression.

10

goclassy

Common
Crawl

Compressed
Files

WET
Files

fastText

fastText

fastText

Filtered Files
Language Tags

Files Classified
by Language

 · · ·
 · · ·
 · · ·...

...

...
fastText

...

11

goclassy

Common
Crawl

Compressed
Files

WET
Files

fastText

fastText

fastText

Filtered Files
Language Tags

Files Classified
by Language

 · · ·
 · · ·
 · · ·...

...

...
fastText

...

11

goclassy

Common
Crawl

Compressed
Files

WET
Files

fastText

fastText

fastText

Filtered Files
Language Tags

Files Classified
by Language

 · · ·
 · · ·
 · · ·...

...

...
fastText

...

11

goclassy

Common
Crawl

Compressed
Files

WET
Files

fastText

fastText

fastText

Filtered Files
Language Tags

Files Classified
by Language

 · · ·
 · · ·
 · · ·...

...

...
fastText

...

11

goclassy

Common
Crawl

Compressed
Files

WET
Files

fastText

fastText

fastText

Filtered Files
Language Tags

Files Classified
by Language

 · · ·
 · · ·
 · · ·...

...

...
fastText

...

11

goclassy

Common
Crawl

Compressed
Files

WET
Files

fastText

fastText

fastText

Filtered Files
Language Tags

Files Classified
by Language

 · · ·
 · · ·
 · · ·

...

...

...
fastText

...

11

goclassy

Common
Crawl

Compressed
Files

WET
Files

fastText

fastText

fastText

Filtered Files
Language Tags

Files Classified
by Language

 · · ·
 · · ·
 · · ·...

...

...
fastText

...

11

Benchmarks

Benchmarks

We test both pipelines against one another in an infrastructure using
traditional hard drives that are connected to the main processing
machine via an Ethernet interface. The machine we use has

• an Intel® Xeon® Processor E5-2650 2.00 GHz,
• 20M Cache,
• 203.1 GiB of RAM.

We do not include downloading, decompression or deduplication in
our benchmarks. We use the time UNIX tool for our benchmark.

12

Benchmarks

Pipeline 10 files 100 files 200 files

real
fastText 3m31s 17m39s 31m4s
goclassy 1m42s 9m8s 15m16s
user
fastText 26m53s 4h23m 8h45m
goclassy 11m0s 1h49m 3h38m
sys
fastText 40.56s 6m15s 12m31s
goclassy 39.67s 5m16s 10m5s

13

OSCAR

OSCAR

We publish1 a pre-processed version of the November 2018 snapshot
of Common Crawl which is comprised of usable data in 166 different
languages, we our corpus under the name OSCAR which is short for

Open Super-large Crawled ALMAnaCH2 coRpus.

After processing all the data with goclassy, the size of the whole
Common Crawl snapshot is reduced to 6.3TB, but in spite of this
considerable reduction, OSCAR still dwarfs all previous mentioned
corpora having more 800 billion “words” or spaced separated tokens
and noting that this in fact is an understatement of how big OSCAR
is, as some of the largest languages within OSCAR do not use spaces.

1https://team.inria.fr/almanach/oscar/
2https://team.inria.fr/almanach/

14

https://team.inria.fr/almanach/oscar/
https://team.inria.fr/almanach/

OSCAR

Language Size Words

Orig Dedup Orig Dedup

English 2.3T 1.2T 418,187,793,408 215,841,256,971
Russian 1.2T 568G 92,522,407,837 46,692,691,520
Spanish 278G 149G 47,545,122,279 25,928,290,729
French 282G 138G 46,896,036,417 23,206,776,649
German 308G 145G 44,878,908,446 21,529,164,172
Italian 137G 69G 22,248,707,341 11,250,012,896
Portuguese 124G 64G 20,641,903,898 10,751,156,918
Chinese 508G 249G 14,986,424,850 6,350,215,113
Japanese 216G 106G 4,962,979,182 1,123,067,063
Polish 109G 47G 15,277,255,137 6,708,709,674

Total OSCAR 6.3T 3.2T 844,315,434,723 425,651,344,234

15

License

Following the example of similar corpora, like ParaCrawl3 (Broader
Web-Scale Provision of Parallel Corpora for European Languages). We
license the packaging of OSCAR under the Creative Commons CC0
license (”no rights reserved”)4 z.

We also note that We do not own any of the text from which these
data has been extracted.

Finally, should someone consider that our data contains material
that is owned by them and should therefore not be reproduced in
OSCAR, we put in place a form in our site allowing that person to
point out the content so that we can delete from OSCAR

3https://paracrawl.eu/
4http://creativecommons.org/publicdomain/zero/1.0

16

https://paracrawl.eu/
http://creativecommons.org/publicdomain/zero/1.0

Thank you!

16

Questions?

16

References i

R. Al-Rfou, B. Perozzi, and S. Skiena.
Polyglot: Distributed word representations for multilingual
NLP.
In Proceedings of the Seventeenth Conference on Computational
Natural Language Learning, pages 183–192, Sofia, Bulgaria, Aug.
2013. Association for Computational Linguistics.

P. Bojanowski, E. Grave, A. Joulin, and T. Mikolov.
Enriching word vectors with subword information.
Transactions of the Association for Computational Linguistics,
5:135–146, 2017.
J. Callan, M. Hoy, C. Yoo, and L. Zhao.
Clueweb09 data set, 2009.

17

References ii

J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova.
BERT: Pre-training of Deep Bidirectional Transformers for
Language Understanding.
arXiv e-prints, page arXiv:1810.04805, Oct 2018.

E. Grave, P. Bojanowski, P. Gupta, A. Joulin, and T. Mikolov.
Learning word vectors for 157 languages.
In Proceedings of the 11th Language Resources and Evaluation
Conference, Miyazaki, Japan, May 2018. European Language
Resource Association.
A. Joulin, E. Grave, P. Bojanowski, M. Douze, H. Jégou, and
T. Mikolov.
Fasttext.zip: Compressing text classification models.
CoRR, abs/1612.03651, 2016.

18

References iii

A. Joulin, E. Grave, P. Bojanowski, and T. Mikolov.
Bag of tricks for efficient text classification.
In Proceedings of the 15th Conference of the European Chapter of
the Association for Computational Linguistics: Volume 2, Short
Papers, pages 427–431, Valencia, Spain, Apr. 2017. Association for
Computational Linguistics.

T. Mikolov, E. Grave, P. Bojanowski, C. Puhrsch, and A. Joulin.
Advances in pre-training distributed word representations.
In Proceedings of the Eleventh International Conference on
Language Resources and Evaluation, LREC 2018, Miyazaki, Japan,
May 7-12, 2018., 2018.

19

References iv

T. Mikolov, I. Sutskever, K. Chen, G. Corrado, and J. Dean.
Distributed representations of words and phrases and their
compositionality.
In Proceedings of the 26th International Conference on Neural
Information Processing Systems - Volume 2, NIPS’13, pages
3111–3119, USA, 2013. Curran Associates Inc.
R. Parker, D. Graff, J. Kong, K. Chen, and K. Maeda.
English gigaword fifth edition, linguistic data consortium.
Technical report, Technical Report. Linguistic Data Consortium,
2011.

20

References v

J. Pennington, R. Socher, and C. Manning.
Glove: Global vectors for word representation.
In Proceedings of the 2014 Conference on Empirical Methods in
Natural Language Processing (EMNLP), pages 1532–1543, Doha,
Qatar, Oct. 2014. Association for Computational Linguistics.

M. Peters, M. Neumann, M. Iyyer, M. Gardner, C. Clark, K. Lee, and
L. Zettlemoyer.
Deep contextualized word representations.
In Proceedings of the 2018 Conference of the North American
Chapter of the Association for Computational Linguistics: Human
Language Technologies, Volume 1 (Long Papers), pages
2227–2237, New Orleans, Louisiana, June 2018. Association for
Computational Linguistics.

21

References vi

A. Radford, K. Narasimhan, T. Salimans, and I. Sutskever.
Improving language understanding by generative pre-training.
OpenAI Blog, 2018.

A. Radford, J. Wu, R. Child, D. Luan, D. Amodei, and I. Sutskever.
Language models are unsupervised multitask learners.
OpenAI Blog, 1:8, 2019.

Z. Yang, Z. Dai, Y. Yang, J. G. Carbonell, R. Salakhutdinov, and Q. V.
Le.
Xlnet: Generalized autoregressive pretraining for language
understanding.
CoRR, abs/1906.08237, 2019.

22

References vii

Y. Zhu, R. Kiros, R. S. Zemel, R. Salakhutdinov, R. Urtasun,
A. Torralba, and S. Fidler.
Aligning books and movies: Towards story-like visual
explanations by watching movies and reading books.
In 2015 IEEE International Conference on Computer Vision, ICCV
2015, Santiago, Chile, December 7-13, 2015, pages 19–27. IEEE
Computer Society, 2015.

23

	Introduction
	Common Crawl
	fastText Pipeline
	Asynchronous pipeline
	Benchmarks
	OSCAR

